Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance.

Identifieur interne : 000813 ( Main/Exploration ); précédent : 000812; suivant : 000814

A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance.

Auteurs : Marco Moroldo [France] ; Sophie Paillard ; Raffaella Marconi ; Legeai Fabrice ; Aurelie Canaguier ; Corinne Cruaud ; Veronique De Berardinis ; Cecile Guichard ; Veronique Brunaud ; Isabelle Le Clainche ; Simone Scalabrin ; Raffaele Testolin ; Gabriele Di Gaspero ; Michele Morgante ; Anne-Francoise Adam-Blondon

Source :

RBID : pubmed:18554400

Descripteurs français

English descriptors

Abstract

BACKGROUND

Whole-genome physical maps facilitate genome sequencing, sequence assembly, mapping of candidate genes, and the design of targeted genetic markers. An automated protocol was used to construct a Vitis vinifera 'Cabernet Sauvignon' physical map. The quality of the result was addressed with regard to the effect of high heterozygosity on the accuracy of contig assembly. Its usefulness for the genome-wide mapping of genes for disease resistance, which is an important trait for grapevine, was then assessed.

RESULTS

The physical map included 29,727 BAC clones assembled into 1,770 contigs, spanning 715,684 kbp, and corresponding to 1.5-fold the genome size. Map inflation was due to high heterozygosity, which caused either the separation of allelic BACs in two different contigs, or local mis-assembly in contigs containing BACs from the two haplotypes. Genetic markers anchored 395 contigs or 255,476 kbp to chromosomes. The fully automated assembly and anchorage procedures were validated by BAC-by-BAC blast of the end sequences against the grape genome sequence, unveiling 7.3% of chimerical contigs. The distribution across the physical map of candidate genes for non-host and host resistance, and for defence signalling pathways was then studied. NBS-LRR and RLK genes for host resistance were found in 424 contigs, 133 of them (32%) were assigned to chromosomes, on which they are mostly organised in clusters. Non-host and defence signalling genes were found in 99 contigs dispersed without a discernable pattern across the genome.

CONCLUSION

Despite some limitations that interfere with the correct assembly of heterozygous clones into contigs, the 'Cabernet Sauvignon' physical map is a useful and reliable intermediary step between a genetic map and the genome sequence. This tool was successfully exploited for a quick mapping of complex families of genes, and it strengthened previous clues of co-localisation of major NBS-LRR clusters and disease resistance loci in grapevine.


DOI: 10.1186/1471-2229-8-66
PubMed: 18554400
PubMed Central: PMC2442077


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance.</title>
<author>
<name sortKey="Moroldo, Marco" sort="Moroldo, Marco" uniqKey="Moroldo M" first="Marco" last="Moroldo">Marco Moroldo</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR de Génomique Végétale, INRA-CNRS-UEVE, 2, Rue Gaston Crémieux, CP5708, 91057 Evry Cedex, France. moroldo@evry.inra.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR de Génomique Végétale, INRA-CNRS-UEVE, 2, Rue Gaston Crémieux, CP5708, 91057 Evry Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Évry (Essonne)</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Paillard, Sophie" sort="Paillard, Sophie" uniqKey="Paillard S" first="Sophie" last="Paillard">Sophie Paillard</name>
</author>
<author>
<name sortKey="Marconi, Raffaella" sort="Marconi, Raffaella" uniqKey="Marconi R" first="Raffaella" last="Marconi">Raffaella Marconi</name>
</author>
<author>
<name sortKey="Fabrice, Legeai" sort="Fabrice, Legeai" uniqKey="Fabrice L" first="Legeai" last="Fabrice">Legeai Fabrice</name>
</author>
<author>
<name sortKey="Canaguier, Aurelie" sort="Canaguier, Aurelie" uniqKey="Canaguier A" first="Aurelie" last="Canaguier">Aurelie Canaguier</name>
</author>
<author>
<name sortKey="Cruaud, Corinne" sort="Cruaud, Corinne" uniqKey="Cruaud C" first="Corinne" last="Cruaud">Corinne Cruaud</name>
</author>
<author>
<name sortKey="De Berardinis, Veronique" sort="De Berardinis, Veronique" uniqKey="De Berardinis V" first="Veronique" last="De Berardinis">Veronique De Berardinis</name>
</author>
<author>
<name sortKey="Guichard, Cecile" sort="Guichard, Cecile" uniqKey="Guichard C" first="Cecile" last="Guichard">Cecile Guichard</name>
</author>
<author>
<name sortKey="Brunaud, Veronique" sort="Brunaud, Veronique" uniqKey="Brunaud V" first="Veronique" last="Brunaud">Veronique Brunaud</name>
</author>
<author>
<name sortKey="Le Clainche, Isabelle" sort="Le Clainche, Isabelle" uniqKey="Le Clainche I" first="Isabelle" last="Le Clainche">Isabelle Le Clainche</name>
</author>
<author>
<name sortKey="Scalabrin, Simone" sort="Scalabrin, Simone" uniqKey="Scalabrin S" first="Simone" last="Scalabrin">Simone Scalabrin</name>
</author>
<author>
<name sortKey="Testolin, Raffaele" sort="Testolin, Raffaele" uniqKey="Testolin R" first="Raffaele" last="Testolin">Raffaele Testolin</name>
</author>
<author>
<name sortKey="Di Gaspero, Gabriele" sort="Di Gaspero, Gabriele" uniqKey="Di Gaspero G" first="Gabriele" last="Di Gaspero">Gabriele Di Gaspero</name>
</author>
<author>
<name sortKey="Morgante, Michele" sort="Morgante, Michele" uniqKey="Morgante M" first="Michele" last="Morgante">Michele Morgante</name>
</author>
<author>
<name sortKey="Adam Blondon, Anne Francoise" sort="Adam Blondon, Anne Francoise" uniqKey="Adam Blondon A" first="Anne-Francoise" last="Adam-Blondon">Anne-Francoise Adam-Blondon</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18554400</idno>
<idno type="pmid">18554400</idno>
<idno type="doi">10.1186/1471-2229-8-66</idno>
<idno type="pmc">PMC2442077</idno>
<idno type="wicri:Area/Main/Corpus">000817</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000817</idno>
<idno type="wicri:Area/Main/Curation">000817</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000817</idno>
<idno type="wicri:Area/Main/Exploration">000817</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance.</title>
<author>
<name sortKey="Moroldo, Marco" sort="Moroldo, Marco" uniqKey="Moroldo M" first="Marco" last="Moroldo">Marco Moroldo</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR de Génomique Végétale, INRA-CNRS-UEVE, 2, Rue Gaston Crémieux, CP5708, 91057 Evry Cedex, France. moroldo@evry.inra.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR de Génomique Végétale, INRA-CNRS-UEVE, 2, Rue Gaston Crémieux, CP5708, 91057 Evry Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Évry (Essonne)</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Paillard, Sophie" sort="Paillard, Sophie" uniqKey="Paillard S" first="Sophie" last="Paillard">Sophie Paillard</name>
</author>
<author>
<name sortKey="Marconi, Raffaella" sort="Marconi, Raffaella" uniqKey="Marconi R" first="Raffaella" last="Marconi">Raffaella Marconi</name>
</author>
<author>
<name sortKey="Fabrice, Legeai" sort="Fabrice, Legeai" uniqKey="Fabrice L" first="Legeai" last="Fabrice">Legeai Fabrice</name>
</author>
<author>
<name sortKey="Canaguier, Aurelie" sort="Canaguier, Aurelie" uniqKey="Canaguier A" first="Aurelie" last="Canaguier">Aurelie Canaguier</name>
</author>
<author>
<name sortKey="Cruaud, Corinne" sort="Cruaud, Corinne" uniqKey="Cruaud C" first="Corinne" last="Cruaud">Corinne Cruaud</name>
</author>
<author>
<name sortKey="De Berardinis, Veronique" sort="De Berardinis, Veronique" uniqKey="De Berardinis V" first="Veronique" last="De Berardinis">Veronique De Berardinis</name>
</author>
<author>
<name sortKey="Guichard, Cecile" sort="Guichard, Cecile" uniqKey="Guichard C" first="Cecile" last="Guichard">Cecile Guichard</name>
</author>
<author>
<name sortKey="Brunaud, Veronique" sort="Brunaud, Veronique" uniqKey="Brunaud V" first="Veronique" last="Brunaud">Veronique Brunaud</name>
</author>
<author>
<name sortKey="Le Clainche, Isabelle" sort="Le Clainche, Isabelle" uniqKey="Le Clainche I" first="Isabelle" last="Le Clainche">Isabelle Le Clainche</name>
</author>
<author>
<name sortKey="Scalabrin, Simone" sort="Scalabrin, Simone" uniqKey="Scalabrin S" first="Simone" last="Scalabrin">Simone Scalabrin</name>
</author>
<author>
<name sortKey="Testolin, Raffaele" sort="Testolin, Raffaele" uniqKey="Testolin R" first="Raffaele" last="Testolin">Raffaele Testolin</name>
</author>
<author>
<name sortKey="Di Gaspero, Gabriele" sort="Di Gaspero, Gabriele" uniqKey="Di Gaspero G" first="Gabriele" last="Di Gaspero">Gabriele Di Gaspero</name>
</author>
<author>
<name sortKey="Morgante, Michele" sort="Morgante, Michele" uniqKey="Morgante M" first="Michele" last="Morgante">Michele Morgante</name>
</author>
<author>
<name sortKey="Adam Blondon, Anne Francoise" sort="Adam Blondon, Anne Francoise" uniqKey="Adam Blondon A" first="Anne-Francoise" last="Adam-Blondon">Anne-Francoise Adam-Blondon</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosomes, Plant (genetics)</term>
<term>Genes, Plant (genetics)</term>
<term>Genome, Plant (MeSH)</term>
<term>Heterozygote (MeSH)</term>
<term>Immunity, Innate (genetics)</term>
<term>Physical Chromosome Mapping (methods)</term>
<term>Plant Diseases (genetics)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Signal Transduction (genetics)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Cartographie physique de chromosome (méthodes)</term>
<term>Chromosomes de plante (génétique)</term>
<term>Gènes de plante (génétique)</term>
<term>Génome végétal (MeSH)</term>
<term>Hétérozygote (MeSH)</term>
<term>Immunité innée (génétique)</term>
<term>Maladies des plantes (génétique)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Transduction du signal (génétique)</term>
<term>Vitis (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromosomes, Plant</term>
<term>Genes, Plant</term>
<term>Immunity, Innate</term>
<term>Plant Diseases</term>
<term>Signal Transduction</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chromosomes de plante</term>
<term>Gènes de plante</term>
<term>Immunité innée</term>
<term>Maladies des plantes</term>
<term>Transduction du signal</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Physical Chromosome Mapping</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cartographie physique de chromosome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome, Plant</term>
<term>Heterozygote</term>
<term>Polymerase Chain Reaction</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Génome végétal</term>
<term>Hétérozygote</term>
<term>Réaction de polymérisation en chaîne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Whole-genome physical maps facilitate genome sequencing, sequence assembly, mapping of candidate genes, and the design of targeted genetic markers. An automated protocol was used to construct a Vitis vinifera 'Cabernet Sauvignon' physical map. The quality of the result was addressed with regard to the effect of high heterozygosity on the accuracy of contig assembly. Its usefulness for the genome-wide mapping of genes for disease resistance, which is an important trait for grapevine, was then assessed.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The physical map included 29,727 BAC clones assembled into 1,770 contigs, spanning 715,684 kbp, and corresponding to 1.5-fold the genome size. Map inflation was due to high heterozygosity, which caused either the separation of allelic BACs in two different contigs, or local mis-assembly in contigs containing BACs from the two haplotypes. Genetic markers anchored 395 contigs or 255,476 kbp to chromosomes. The fully automated assembly and anchorage procedures were validated by BAC-by-BAC blast of the end sequences against the grape genome sequence, unveiling 7.3% of chimerical contigs. The distribution across the physical map of candidate genes for non-host and host resistance, and for defence signalling pathways was then studied. NBS-LRR and RLK genes for host resistance were found in 424 contigs, 133 of them (32%) were assigned to chromosomes, on which they are mostly organised in clusters. Non-host and defence signalling genes were found in 99 contigs dispersed without a discernable pattern across the genome.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Despite some limitations that interfere with the correct assembly of heterozygous clones into contigs, the 'Cabernet Sauvignon' physical map is a useful and reliable intermediary step between a genetic map and the genome sequence. This tool was successfully exploited for a quick mapping of complex families of genes, and it strengthened previous clues of co-localisation of major NBS-LRR clusters and disease resistance loci in grapevine.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18554400</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>10</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2008</Year>
<Month>Jun</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance.</ArticleTitle>
<Pagination>
<MedlinePgn>66</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-8-66</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Whole-genome physical maps facilitate genome sequencing, sequence assembly, mapping of candidate genes, and the design of targeted genetic markers. An automated protocol was used to construct a Vitis vinifera 'Cabernet Sauvignon' physical map. The quality of the result was addressed with regard to the effect of high heterozygosity on the accuracy of contig assembly. Its usefulness for the genome-wide mapping of genes for disease resistance, which is an important trait for grapevine, was then assessed.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The physical map included 29,727 BAC clones assembled into 1,770 contigs, spanning 715,684 kbp, and corresponding to 1.5-fold the genome size. Map inflation was due to high heterozygosity, which caused either the separation of allelic BACs in two different contigs, or local mis-assembly in contigs containing BACs from the two haplotypes. Genetic markers anchored 395 contigs or 255,476 kbp to chromosomes. The fully automated assembly and anchorage procedures were validated by BAC-by-BAC blast of the end sequences against the grape genome sequence, unveiling 7.3% of chimerical contigs. The distribution across the physical map of candidate genes for non-host and host resistance, and for defence signalling pathways was then studied. NBS-LRR and RLK genes for host resistance were found in 424 contigs, 133 of them (32%) were assigned to chromosomes, on which they are mostly organised in clusters. Non-host and defence signalling genes were found in 99 contigs dispersed without a discernable pattern across the genome.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Despite some limitations that interfere with the correct assembly of heterozygous clones into contigs, the 'Cabernet Sauvignon' physical map is a useful and reliable intermediary step between a genetic map and the genome sequence. This tool was successfully exploited for a quick mapping of complex families of genes, and it strengthened previous clues of co-localisation of major NBS-LRR clusters and disease resistance loci in grapevine.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Moroldo</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>UMR de Génomique Végétale, INRA-CNRS-UEVE, 2, Rue Gaston Crémieux, CP5708, 91057 Evry Cedex, France. moroldo@evry.inra.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paillard</LastName>
<ForeName>Sophie</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marconi</LastName>
<ForeName>Raffaella</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fabrice</LastName>
<ForeName>Legeai</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Canaguier</LastName>
<ForeName>Aurelie</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cruaud</LastName>
<ForeName>Corinne</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>De Berardinis</LastName>
<ForeName>Veronique</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guichard</LastName>
<ForeName>Cecile</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brunaud</LastName>
<ForeName>Veronique</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Le Clainche</LastName>
<ForeName>Isabelle</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Scalabrin</LastName>
<ForeName>Simone</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Testolin</LastName>
<ForeName>Raffaele</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Di Gaspero</LastName>
<ForeName>Gabriele</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morgante</LastName>
<ForeName>Michele</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Adam-Blondon</LastName>
<ForeName>Anne-Francoise</ForeName>
<Initials>AF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>06</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006579" MajorTopicYN="N">Heterozygote</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020161" MajorTopicYN="N">Physical Chromosome Mapping</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18554400</ArticleId>
<ArticleId IdType="pii">1471-2229-8-66</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-8-66</ArticleId>
<ArticleId IdType="pmc">PMC2442077</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 Aug 8;418(6898):696-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 May;114(7):1249-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17380315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Aug;11(8):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16843033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Aug;4(4):295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10865-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Mar;104(4):610-618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 May;110(8):1363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15834699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Feb;13(2):437-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Feb;14(2):319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Apr;18(4):291-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15828681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Feb;116(3):427-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18064436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Nov;174(3):1493-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17028342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jun 22;292(5525):2281-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Feb;18(2):465-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Jun;10(6):789-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Aug;3(4):315-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Mar;108(5):864-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14605808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 May 19;125(4):749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Aug;176(4):2637-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(4):212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16677430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Apr;9(4):187-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15063869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(6):1063-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Sep 9;5:130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15357877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17284319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2004 Dec;84(6):941-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15533711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(12):e1326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2006;7:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16433923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Sep 3;285(5433):1562-1565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10477519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2007 May;89(5):630-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17270394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1999 Jul;22(3):271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10391215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Aug;5(8):578-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15266340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Jul;111(2):370-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15902396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):27-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Aug;15(8):1127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16077012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Feb;30(2):194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11799393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Feb;9(2):97-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15102376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2006;6:32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2003 Sep;82(3):378-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12906862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2007 Jan;89(1):160-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17011744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Jul;113(2):344-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16791700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 May;9(5):211-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15130544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Jun;34(6):768-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12795697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 5;309(5736):929-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15976272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Apr;15(4):809-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Aug;113(3):369-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16799809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Mar 15;295(5562):2077-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11847308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Mar;14(3):537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11910002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1997 May;16(1):84-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9140400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Évry (Essonne)</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Adam Blondon, Anne Francoise" sort="Adam Blondon, Anne Francoise" uniqKey="Adam Blondon A" first="Anne-Francoise" last="Adam-Blondon">Anne-Francoise Adam-Blondon</name>
<name sortKey="Brunaud, Veronique" sort="Brunaud, Veronique" uniqKey="Brunaud V" first="Veronique" last="Brunaud">Veronique Brunaud</name>
<name sortKey="Canaguier, Aurelie" sort="Canaguier, Aurelie" uniqKey="Canaguier A" first="Aurelie" last="Canaguier">Aurelie Canaguier</name>
<name sortKey="Cruaud, Corinne" sort="Cruaud, Corinne" uniqKey="Cruaud C" first="Corinne" last="Cruaud">Corinne Cruaud</name>
<name sortKey="De Berardinis, Veronique" sort="De Berardinis, Veronique" uniqKey="De Berardinis V" first="Veronique" last="De Berardinis">Veronique De Berardinis</name>
<name sortKey="Di Gaspero, Gabriele" sort="Di Gaspero, Gabriele" uniqKey="Di Gaspero G" first="Gabriele" last="Di Gaspero">Gabriele Di Gaspero</name>
<name sortKey="Fabrice, Legeai" sort="Fabrice, Legeai" uniqKey="Fabrice L" first="Legeai" last="Fabrice">Legeai Fabrice</name>
<name sortKey="Guichard, Cecile" sort="Guichard, Cecile" uniqKey="Guichard C" first="Cecile" last="Guichard">Cecile Guichard</name>
<name sortKey="Le Clainche, Isabelle" sort="Le Clainche, Isabelle" uniqKey="Le Clainche I" first="Isabelle" last="Le Clainche">Isabelle Le Clainche</name>
<name sortKey="Marconi, Raffaella" sort="Marconi, Raffaella" uniqKey="Marconi R" first="Raffaella" last="Marconi">Raffaella Marconi</name>
<name sortKey="Morgante, Michele" sort="Morgante, Michele" uniqKey="Morgante M" first="Michele" last="Morgante">Michele Morgante</name>
<name sortKey="Paillard, Sophie" sort="Paillard, Sophie" uniqKey="Paillard S" first="Sophie" last="Paillard">Sophie Paillard</name>
<name sortKey="Scalabrin, Simone" sort="Scalabrin, Simone" uniqKey="Scalabrin S" first="Simone" last="Scalabrin">Simone Scalabrin</name>
<name sortKey="Testolin, Raffaele" sort="Testolin, Raffaele" uniqKey="Testolin R" first="Raffaele" last="Testolin">Raffaele Testolin</name>
</noCountry>
<country name="France">
<region name="Île-de-France">
<name sortKey="Moroldo, Marco" sort="Moroldo, Marco" uniqKey="Moroldo M" first="Marco" last="Moroldo">Marco Moroldo</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000813 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000813 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18554400
   |texte=   A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18554400" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020